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We obtain compact analytical expressions for the transport coefficients. 

The complexity of the problem of calculating the transport coefficients of an N-compo- 
nent gas mixture consisting of atoms and molecules is due to the necessity of taking into 
account in a systematic way the excited internal degrees of freedom of the molecules. The 
essence of the problem is as follows. In order to use the well-developed methods of calcu- 
lating the kinetic coefficients of ideal gas mixtures [i] to solve this problem, where the 
transport coefficients are determined from the solution of a linear system of N algebraic 
equations, each i-th internal state of the molecule must be identified with a gas of the i-th 
kind. Then the effective number of gas components in the mixture and hence the amount of 
computation required greatly increase. An exception is the case when the distribution over 
the internal degrees of freedom can be described in terms of a certain temperature, which in 
general is different from the translational temperature of the gas. In this case the system 
of N algebraic equations is supplemented by only K additional equations, where K is the num- 
ber of terms retained in the expansion of the first-order correction to the zero-order dis- 
tribution function in the Chapman-Enskog method [2]. However even in this simple case the 
resulting system of equations is complicated and the author is unaware of a paper in which the 
equations are solved. 

In practice, the approximation of [3] is widely used, in which the transport coefficients 
are calculated as for an N-component mixture of ideal gases. In [3] the dependence of the 
diffusion velocity of the molecules on their internal states is completely neglected, and the 
stress tensor and diffusion velocity reduce to the expressions obtained for a mixture of 
structureless particles. Diffusion of internal energy is taken into account only approxi- 
mately in the expression for the heat flux. 

The method used in the present paper is based on [4], in which an approximate method of 
calculating the transport coefficients of multi-component gas mixtures of structureless par- 
ticles is given, and on [5], in which the transport coefficients of a rotationally excited 
gas are calculated. We consider the simplest case of a mixture consisting of a single atomic 
and single molecular component. The results are analyzed and compared with previous results 
and the accuracy of our results is estimated. 

Following the generally used method, we identify the set of molecules in the i-th quan- 
tum state with a gas of the i-th kind. Let i = 0 correspond to the atomic component, and 
i = i, 2, ..., ~ correspond to the molecular component of a given kind. After transforming 
the semiclassical system of kinetic equations for the distribution function of particles of 
the i-th kind fi(t, x, ~i) to dimensionless form, these equations will contain the parameters 
Kn and KnQ, where Kn is equivalent to the Knudsen number, and KnQ represents a set of para- 
meters equivalent to the average (per gas-kinetic collision) probabilities of the inelastic 
transitions Q = R-R, R-T, V-V, V-T, V-R-T [6]. The case when any one of the parameters, for 
example KnV_T, is of order unity corresponds to so-called equilibrium exchange of the trans- 
lational and vibrational energies, and the case Knv_ T ~ Kn corresponds to relaxational ex- 
change. We first consider only the relaxational case, when all of the parameters Kn o are com- 
parable to Kn. The equilibrium limit will be considered below. 

At the hydrodynamical level the solution of the system of kinetic equations is written 
as an asymptotic series in the small parameter Kn. After eliminating the derivatives with 
respect to time (in correspondence with the Chapman-Enskog method) the equation for the first- 
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order correction r  i ) to the zeroth approximation distribution function fi(~ takes the form 
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per collision, and the type of inelastic transition (R-R, R-T, V-V, V-T, V-R-T) will be deter- 
mined by  t h e  r e l a t i o n  b e t w e e n  t h e  n u m b e r s  i ,  j ,  k ,  s  s = g i g j / g k g s  w h e r e  g i  i s  t h e  d e g e n e r a c y  

of the i-th state; b, e, v are the impact parameter, azimuthal angle and relative velocity 

of the p a i r  o f  c o l l i d i n g  p a r t i c l e s ,  r e s p e c t i v e l y ;  c i = ~ i  - u ,  w h e r e  u i s  t h e  h y d r o d y n a m i c  

velocity of the gas and T is the temperature defined in terms of the kinetic energy of the 
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m 0 = m a is the mass of an atom; m i = m M (i = i, 2 ..... ~) is the mass of a molecule; E i are 

the vibrational-rotational energy levels of the molecules; k is the Boltzmann constant. 
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Following (5), we transform the set of molecular vectors dri (i = i, 2, ..., ~) to a 
set Ds(P), using as the elements of the transformation matrix the orthogonal Waldman-Truben- 
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D ( ; ) ,  0 (~)  ( i  = 1, 2 . . . . .  ~)  w i i l  be l i n e a r l y  i n d e p e n d e n t .  

According to the Chapman-Enskog method, we write the general solution of the system (I) 
as a sum of a particular solution and the general solution of the homogeneous integral 
equation. The arbitrary constants in the general solution are chosen so that r does not 
contribute to n i, u, and T. Using the results of [4, 5], and also (2) and (3), ~e write the 
general solution of (i) in the form 
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Conditions are imposed on the coefficients A i, Ai(1), ~i(p), B i, Gi(~0(P) = 0, p = i, 2, 
..., ~), which obey integral equations obtained from (i) and (3), such that r (I) does not 
contribute to n, u, T. 

The coefficients of (4) are expanded in a double set of polynomials 
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In (bb) L i takes the values A i and B i, ss takes the values ~sq and bsq, j = 3/2 and 

5/2, Sl~li are the Sonine polynomials, Rlsl=~hm~ are the orthonormal Waldman-Trubenbacher 
h=0 

polynomials, H~~ n~ ~) = (m~ -- m)/(m ~ _(~)z)'/~, n~= m)n/n The scalar part of (4) G i 
j=0 

contributes to the rate constant of the vibrational-Totational transitions. The problem of 
obtaining an explicit expression for G i and the reduction of this expression to one conven- 
ient for calculation is outside the scope of the present paper�9 We note that when the tempera- 
ture T is defined in terms of the kinetic energy of the molecules, terms in the hydrodynamical 
equations corresponding to the bulk viscosity and relaxational pressure will be absent. 

In the calculation of A i, B i, Ai(1), we limit ourselves to the first nonvanishing terms 
of the series (5) a0z, boo, a(~, whlch were called the dominant terms in the expansion (5) 

in [4] In calculating ~i(p) we use only the term a(~2 The quantities ~01 boo, aft) 

a(~0 ) are found using a~variational method and the maximum principle [i]. We then find: 
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The coefficients in (6) are functions of the ~-integrals of [I], corresponding to elastic 
scattering of particles: 
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3 k T  is the coefficient of self-diffusion of the molecules, Da~=3kTI16n~a .Q~  "~ 
Do= 8n~m~Q~'l)  

is  the c o e f f i c i e n t  of binary d i f fu s ion ,  and ~aM = mambt/(ma + mM)- 

The relations (4), with the calculated coefficients (6), can be used to find expressions 
for the velocity of diffusion V i of particles of the i-th kind, the heat flux q, and the stress 

tensor Prs: 
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Hence the system of gas-dynamical equations is now closed.  In t eg ra t ing  (8) in terms of 
the usual r e l a t i o n s :  
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we find expressions for the coefficients of diffusion Dij, 
ductivity ~', and viscosity N: 

i (+ ) DT d i-z- k T  -71- E i  l$iV~r, /9 / i r ~  

thermodiffusion Di T, 

Dai= 3kT (n; a -  < m ) )(m i -  < m ) ) i = a, M, 
8 n R  (~> < m ~ > - -  < m > ~ ' 

thermal con- 

(9 )  
Du = 3kT (mM--<m>)z -~- n (Ei-- <E))(Ej--<E)) Do 

8nR (') < m z ) -- < in ) ~" n~, ( E 2 ) -- ( E ) 2 1@ naDo , i, j =/=0, 

J nDax; 

5kT 75 k~T 
D [ = 0 ,  n =  , 

8G' 32 R 

We consider some limiting cases of these relations. When the molecules have no internal 
energy (E i = 0, i = i, 2 .... , ~) the relations (8) with the coefficients (9) reduce to the 
corresponding expressions of [4] for a gas mixture of structureless particles. In the limit 
when the concentration of the molecular component n MgOes to zero, (8) reduces to the well- 
known expressions for an ideal gas [i]. In the case when the concentration of the atomic 
component n a goes to zero, (8) with the coefficients (9) reduces to the expressions of [5], 

253 



corresponding to the relaxational limit. If we consider the case where the total Hamiltonian 
of the system can be written as a sum of Hamiltonians corresponding to the separate vibra- 
tional and rotational degrees of freedom of the molecules, then E i = E r + Ev, <E> = <E> R + 
<E> V (r is the rotational quantum number, and v is the vibrational quantum number). 

We compare our results with those of [3], which are usually used in practical calcula- 
tions. We note that in [3] the expression for the velocity of diffusion of a molecule in the 
i-th state does not contain the term involving ~ < E > /8Xr, which dominates in the limit 
n a + 0. In the expression for the heat flux the term proportional to ~ < E > /~x r is approxi- 
mated by adding an additional term to the coefficient ~'. 

We estimate the contributions of the terms that were dropped from the expansions in (5). 
In the calculation of Ai(1), A i, B i we kept the first nonvanishing terms g~0, ~01, boo in the 
expansions (5) and (Sb). These were called the dominant terms in [4], because they are the 
only terms in the expansions which contribute to the coefficient of diffusion, thermal con- 
ductivity, and the viscosity, respectively. The numerical results presented in [4] demon- 
strate the high degree of accuracy of this approximation. It is shown that the error in the 
transport coefficients is only of the order of several percent. 

The expressions given here for the transport coefficients are obtained in the framework 
of the relaxational scheme for the internal states of the molecule. As shown in [5], where 
we go to the equilibrium regime corresponding to a simple exchange of energy between the 
internal and translational degrees of freedom of the molecules, additional terms appear in 
the expressions for the transport coefficients proportional to (pTR)-l and (p~v) -I, where 
~R and T V are the vibrational and rotational relaxation times. It can be shown [5] that the 
contribution of these terms constitutes only several percent at room temperature, and is 
negligibly small at high temperatures. THerefore the expressions (8) and (9), obtained in 
the framework of the relaxational scheme, can be used over the entire range of the parameter 
KnQ. 

In the calculation of hi(P), we used only the first nonvanishing term a~) in the ex- 
pansion (5a). In the equilibrium limit the additional terms in (5a) lead to additional terms 
in the expressions for the transport coefficients proportional to (p~)-1, (p~)-2, and so on, 
which do not contribute significantly to the coefficients, as pointed out above. Obviously, 
this approximation will also be satisfactory in the relaxation limit. 
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